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ABSTRACT

This paper presents results of an approximation study of

cyclic queueing phenomena that occur in multiprogrammed computer
systems. Based on Wald's Identity and using ideas of diffusion,
the objective is to develop convenient and nearly explicit formulas
relating processor utilization in such systems to simple program
parameters and the level of multiprogramming. Some numerical results
to indicate the quality of the proposed approximation are given.
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ABSTRACT .

This paper presents results of an approximation study of cyclic

queueing phenomena that occur in multiprogrammed computer systems.

Based on Wald's Identity and using ideas of diffusion, the objective

is to develop convenient and nearly explicit formulas relating

processor utilization in such systems to simple program parameters

and the level of multiprogramming. Some numerical results to indicate

the quality of the proposed approximation are given.

1. Introduction .

In a previous paper [2] we have initiated an approximation

study of cyclic queueing phenomena that occur in multiprogrammed

computer systems. Particular attention was focused upon processor

utilization estimation, as the latter depends upon the statistical

properties of programs. The basis for the approximation was the

observation that under "heavy traffic" conditions it is plausible to

approximate the flow of programs in a multiprogrammed computer system

by means of a diffusion or Wiener process with appropriate infinitesimal

This author is also a consultant to IBM Research.



parameters and boundary conditions. The results were seen to be

usefully accurate, as judged numerically, and to be of an extremely

simple analytical form. They can thus be put to use for at least

preliminary design purposes, with follow-up refined analysis or

simulation furnishing further corrections if needed.

One deficiency of the results of [2] is that they tend to

misestimate CPU utilization (i.e. the long-run fraction of time that

the CPU is busy) when CPU service or processing times come from

distributions of greater positive skewness than the exponential. In

the present paper we wish to alter our approximation so as to render

it more accurate in the case of such hyper-exponential-appearing CPU

service times. This change is important, since currently available

data indicates that greater-than-exponential skewness is not uncommon,



2. The Model .

We suppose, as we did in [2], that J programs are in the

Central Processing Unit (CPU) - Data Transfer Unit (DTU) cycle. Each

program is (i) in the process of awaiting, or receiving, service at

the CPU, at the termination of which (ii) it repairs to the DTU, again

queueing as if at a single server. Having received the requisite

information at the DTU stage it then returns to the CPU stage. This

process continues indefinitely. When programs are completed and thus

removed from the system new programs are immediately reintroduced. A

diagram indicating the situation appears below.

The assumptions made concerning program behavior are the

following:

(a) The sequence of CPU service or processing times is one of

independent identically distributed random variables (i.i.d.r.v.)

{C^ i = 1,2,...}.

(b) The sequence of DTU service or auxiliary memory access and data

transfer times is also one of i.i.d.r.v., {D.}.
i

(c) CPU and DTU processing times are mutually independent. Further-

more, we must assume the following.

-sC
(d) The Laplace transform, E[e '

], of a generic CPU service time

converges for -s < s < 0, for some s > 0. This latter is

truly a mathematical restriction, but is probably not a serious

one; all gamma densities, and convex combinations of exponentials

(hyperexponentials) are covered, for example.
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3. Analysis of the Model .

In summary, our present approximate analysis of the multi-

programming model proceeds by first attempting to find an appropriate

set of parameters u and a in the diffusion equation

9F 9F o 2
3
2F

77 = - y tt
- + 77- -r—z • (3.1)

at 3x 2 3x^

Here F(x,t) is the approximate distribution of the number of jobs

in the CPU stage at time t. An argument for obtaining parameters u

and a 2 which was based on asymptotic renewal theory appears in [2].

Then we truncate the stationary distribution to allow for the boundary

at x = J, and compare several methods for determining a crucial

constant (denoted by B in [2]) that allows us to deal with the

boundary at x = 0. The latter is important for it is directly

related to CPU utilization, which it is our intention to estimate.

Consider the waiting time, S , of the n— customer to arrive
n

at an ordinary single server—one in which there is no restriction

placed upon the number waiting. The latter model would approximate

the behavior of a cyclic queue or multiprogramming system in which

the number of programs J is unlimited. We shall assume, as is realistic,

that the CPU service rate outstrips that of the DTU, i.e. E[C] < E[D].

Now Feller ([1], pp. 194-198) shows that W has the same distribution as

the maximum of the partial sums of the unrestricted random walk



(d)
W x =' M = max[0,S_ ,S_,...,S ]n n 1 2. n

(3.2)

where

S = X
n
+ X„ + . . . + X

n 1 2 n
(3.3)

and

X
k

= C
k - V (3.4)

To study M , invoke Wald's Identity see Feller ([1], p. 603)

or Kingman [4]

sS
N

I [<Ks)]
N

J

= l, (3.5)

N being the random time at which a boundary is reached, and

iKs) = E[e
sX

] = E[e
SC

] E[e
S°] (3.6)

Now place a boundary at x > 0, and another at -b, b > 0. Then

f sS
N

I *
N

S
N

> X P{S
N

> x} + E

sS
N

,N
S
N
<"b P{S

N
< -b} = 1 (3.7)

If E[C] < E[D] it may be shown that the equation

*(s) = 1 (3.8)



has a solution at s = 0, and one at s_ > . Put s = s, let

b -> °°, and observe that then

P(S
N
>x} =-^s7 ( 3 ' 9 >

E{e |S
N
>x}

This is the probability that the unrestricted random walk S ever

exceeds the boundary at x, and is, by (3.2), equal to the probability

that the waiting time exceeds x. We write this as

-sx
P{W > X} =

s(S -x)
(3 ' 10)

E{e
N

|S
N
>x}

where S - x > represents the excess ; if we neglect the latter we

obtain the estimate

P{W > x} £ e -X
;

if x is large we have the approximation

P{W > x} » C e -
.

By the result of Haji and Newell [3], the number, Q, of

customers in the queue is the number that arrive during the waiting

time of an arbitrary customer; reference is to the stationary dis-

tributions of both W and Q. Conditionally,

P{Q £ n
|
W = x} = G

n
*(x)

,

(3.11)



where G is the distribution function of D, and * represents

Stieltjes convolution. Then, by (3.11) above,

P{Q ;> n} x C G
n
*(x)e -X s dx = C[G(s)]

n
(3.12)

where G(s_) is the Laplace-Stieltjes transform of G, evaluated at

s_. This effectively states that, at least under heavy traffic condi-

E[C]
tions (p = ^r^ -, barely < 1) the stationary distribution of the number

in the system is exponential, but with parameter somewhat different

from that of the diffusion approximation:

2u
~~2" x

Diffusion: P{Q ^ x} « e
a

, (3.13 a)

, 11, 2 Var[D] Var[C]
where

"
=
eIdT " e[cT

and ° TUtTd
+

7e[c])

Wald: P{Q ;> x} x e
[ln G(^)]x = [G(s)]

X
(3.13 b)

see Gaver and Shedler [2]. For a new approximation we then merely

replace the ratio —p by in G(_s) and fit constants as was done in

[2] . The relation between the parameters in the diffusion approxima-

tion expressed by (3.13a) and that in the approximation resulting

from Wald's Identity (3.13b), is considered in the Appendix.

Given the values of u and a 2 the stationary diffusion

approximation for the distribution F of Q satisfies

. dF a2 d 2F ,_ ...= " T~ + T~ T~T » (3.14)
dx 2u dx^
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in which we now propose to replace —£- by £n G(s^) . We also must

determine the constant B in the solution to (3.1A).

1 r
"ax

1 - B e
aJ

where the latter expression satisfies the boundary condition at

x = J: F(J;J) = 1. Here we have introduced the notation F(x;J)

to emphasize the dependence upon the parameter J. The constant

a > can be determined either by an argument based on asymptotic

normality in conflicting renewal processes (see [2]), or as we have

argued, using Wald-Haj i-Newell results.

We now present two ways in which B can be determined.



4 . Fitting the Constant B: Approximations for CPU Utilization .

We suggest and investigate two ways in which the constant B in

(3.15) can readily be determined.

Method 1 . If J = oo then it is well known (see Takacs [6], p. 142) that

server (CPU) utilization is

1 - F(0+;°°) - p
E[C]

E[D]
(4.1)

Hence it follows that to achieve this approximately for large J

we should put B = B = p, from which it follows that

F(x;J) = LjUUL
-ax

1 - p e
-aJ

£ x £ J; a>0 (4.2)

This approach was taken in [2] with good results for exponential CPU

service.

Method 2 . With probability F(J-1;J) there is at least one program

in residence at the DTU. Hence the long-run input to the CPU should

be 1 • F(J-1;J), assuming that E[D] = 1. Now the long-run output

rate from the CPU must equal the input rate, and the output rate

approximates [1 - F(0+;J)] , , . By this conservation principle,
E[C]

then,

1 - B <
a
-a(J--1)

1 - B
-aJ

e
-

B

E[C]

-aJ

1 - B e
-aJ
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from which we find that

B„ =
2 - -a(J-l) -aJ

1 + p e - e

Of course B ->- B as J -> °°.

We shall shortly provide some numerical comparisons that

illustrate the behavior of the two methods when they are applied to

actual measurement data.
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5 . Special Cases .

We now describe the manner in which our approximations may

be applied when certain specific distributions are in force.

Case 1 : CPU service exponential, E[C] = A ; DTU service Erlang - k,

E[D] = 1.

In this case equation (3.8) has the form

<Ks) =
A

1 +
1. (5.1)

It must be solved numerically for s^ a task that can be carried out

by Newton-Raphson iteration.

Case 2 : CPU services exponential; DTU service constant, E[D] = 1.

For this limiting case of (5.1) let k -* °° to obtain the

equation

(t^K
s

= i (5.2)

Case 3 : CPU services Erlang - k, E[C] = A ; DTU service constant,

E[D] = 1.

Here we must solve

-s
ne = 1,

Ak

(5.3)



12

Case 4 : CPU services hyperexponential; DTU services constant,

E[D] = 1.

Representation of CPU services by means of a convex combina-

tion of exponentials (the hyperexponential distribution) suggests

itself according to actual program trace data. This model leads to

the equation

A A

p t4t + d-p)Vs Vs
e"

S
= 1 (5.4)

where

E[C] = A
1

= p X
±

X
+ (l-p)A

2

X

and p takes on an appropriate value between zero and unity. In

practice it is convenient (if not statistically efficient) to fit the

parameters of Cases 3 and 4 by the matching of low moments from model

and data. Supposing that A " < E[C] < A , it can be shown that,

1/2
given E[C] and Var[C] such that ^Li > 1, along with

E[C]
-1

A„ , p and A, are uniquely determined.

Unfortunately, all of the above models require the numerical

solution of a transcendental equation in order to generate actual

numerical estimates of CPU utilization. This disadvantage is not

possessed by the diffusion approximation of [2].

It is of interest that our procedure gives results in complete

accord with an exact analysis in one particular case.
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Case 5 . CPU and DTU services exponential.

This case can easily be analyzed by simple birth-and-death

process methods, for which see [2]. Our procedure demands that we

first solve

fc=-Hit)-l (5.5)
-A-s ; ^1+s

which in this case has the explicit solution s_ = X - 1; conse-

1
quently G(sO = y = p. Then the approximation yields

1 - B.

F(0+;J) = ^-r. (i = 1,2)
1 - B. p

J

Here B. refers to the constant B as determined by Method i (i = 1 or 2)

But for the present model we have

B
2

'
, , 5-1, J

=P=B1> (5 - 6)

1 + p[p ]
- P

and use of B. = p yields

F(0+;J) = -i ^- (5.7)

1 - P

so our approximation is in this case equal to the birth-and-death result.

For our other cases exact equality will not hold.
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6. Numerical Results .

We now present numerical results to indicate the quality of

the proposed approximation. Our examples are in the context of a

single processor system with two-level memory, multiprogrammed and

operated in a demand paging environment. A discussion of cyclic

queueing phenomena in such systems is given in Lewis and Shedler [5].

Accordingly, we interpret the CPU service times in our model as

execution intervals, i.e. times between page exceptions as programs

execute in (constrained) memory of given capacity. We concentrate

on Case 4 above (CPU services hyperexponential, DTU services constant)

on the basis of our experience that execution intervals often fit

well to a hyperexponential model. The assumption of constant DTU

service times arises from the consideration of average access time

along with the time to transfer a page of information.

In all cases we shall consider, values for p, u.. , and y

in the hyperexponential were obtained by matching first and second

moments of the empirical distribution obtained from actual program

data.

Tables 1 and 2 contain numerical results for CPU utilization

obtained by the approximation technique (for both methods of fitting

the constant B) along with results of exact analysis based on semi-

Markov (S-M) methods as given in [5].
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Table 1: CPU Utilization Comparisons

Approx Approx

J S-M B
l

B
2

2 .3903 .1909 .3972

3 .4054 .2486 .4274

4 .4178 .2924 .4440

5 .4280 .3264 .4545

6 .4367 .3534 .4616

7 .4439 .3751 .4668

8 .4501 .3927 .4708

9 .4553 .4072 .4736

10 .4598 .4193 .4759

E[C] = 4871, Var[C[ = .26492 x 10
9

, X^ = 1929

E[D] = 10,000

Approx Approx

J S-M B
l

B
2

2 .2216 .1455 .2216

3 .2286 .1789 .2313

4 .2333 .2003 .2361

5 .2366 .2144 .2388

6 .2388 .2238 .2404

7 .2403 .2301 .2415

8 .2413 .2344 .2422

9 .2420 .2373 .2426

10 .2425 .2393 .2429

E[C] = 4871, Var[C] = .26492 * 10
9

, X * = 1929

E[D] = 20,000
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Table 2: CPU Utilization Comparisons

Approx Approx

J S-M B
l

B
2

2 .4076 .0770 .4249

3 .4281 .1094 .4579

4 .4449 .1385 .4764

5 .4587 .1649 .4882

6 .4702 .1887 .4964

7 .4798 .2105 .5024

8 .4879 .2304 .5070

9 .4948 .2485 .5106

10 .5006 .2654 .5136

E[C] = 10,735, Var[C] = .12313 x 10
10

, A* = 2953
2

E[D] = 20,000

Approx Approx

J S-M B
l

B
2

2 .5316 .2148 .5993

3 .5548 .2884 .6667

4 .5752 .3481 .7064

5 .5935 .3974 .7326

6 .6098 .4388 .7511

7 .6245 .4741 .7650

8 .6379 .5045 .7757

9

10

.6500

.6611

.5309

.5542

.7842

.7911

]
= 17

:

,026, Var[C] = « .39780 x io
10 r1 = 3682E[C]

E[D] = 20,000
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Finally, we present some results of CPU utilization obtained

by trace-driven simulation of the cyclic queueing system. By this

we mean that CPU service times in the model were taken to be the

actual sequence of execution intervals derived from a program trace,

J copies of this sequence being multiprogrammed. In Table 3, these

trace-driven results are displayed, along with values of CPU utiliza-

tion obtained by the approximation technique.

Table 3: Trace-Driven Simulation

CPU Utilization Comparisons

Approx Approx

J Trace B
l

B
2

3 .227 .1789 .2313

6 .229 .2238 .2404

E[C] = 4871, Var[C] = .26492 x 10
9

E[D] = 20,000

Approx Approx

J Trace B
l

B
2

3 .419 .1094 .4579

6 .425 .1887 .4964

E[C] = 10,735, Var[C] = .12313 x 10"

E[D] = 20,000

Approx Approx

J Trace B
l

B
2

3 .538 .2884 .6667

6 .546 .4388 .7511

,~io
E[C] = 17,026, Var[C] = .39780 x 10

E[D] = 20,000
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7 . Summary and Conclusions .

This paper presents the results of approximating processor

utilization in multiprogrammed computer systems using ideas of

diffusion. In particular, the objective is to develop convenient and

nearly explicit formulas relating CPU utilization to simple program

parameters and to the level of multiprogramming.

Numerical comparisons indicate that a reasonably effective

approximation has been obtained when the constant B_ is utilized.

Examples show that for the actual program traces studied our present

approximation is superior to that of [2], which assumed exponentially

distributed CPU service times. Data from our trace material is far

more skewed (long-tailed) than that yielded by the exponential.

Research continues in an attempt to improve the approximate procedures

obtained to date. A promising approach is the iteration of our

approximate solutions. Of course, an eventual goal is that of

obtaining simple but adequate approximations to properties of some-

what more complex and truly realistic networks of servers.
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Appendix

The relation between the parameter in the diffusion approximation

of [2], as expressed in (3.13a), and that in the approximation resulting

from Wald's Identity, (3.13b), will now be considered. Application

of Wald's Identity requires that we find the positive root, s_, of

(3.8). Let us expand ty(s) in Taylor's series:

q 2 n
iji(s) = 1 + sy + *- a 2 + R ( s ) (A_L)

where the remainder is o(s 2
), provided that required moments exist.

Here

u = E(X) = E[C-D] <
X

(A-2)

a 2 - Var[X] = Var[C] + Var[D].
x

At s_ we have from (A-l) and (3.13b), after dispensing with the root

at s = 0,

a 2

y + s -£ + v(s) = 0, (A-3)

or
2 "

x + i + 2
Z + 1 + ~~7

s o^ o— X X

ir(s) = (A-4)

Therefore, if we consider a sequence of queueing situations in which

s^ -> and a 2 does not approach zero, the remainder term approaches
A

zero, since r(s) 0(s). We see then that as s_ * 0,

2y

1 -y -1 (A-5)
s a^— x
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or

s ~ - -jr- (a-6)
x

In the event that s^ > our Wald approximation and the

approximation of [2] coincide, as will now be shown. For s^ approach-

ing zero, as will be true in heavy traffic,

At

-An G(s) = s_ E[D] + o(s) (A-7)

Consequently the parameter in the Wald-Haji-Newell approximation

becomes in heavy traffic

„ FTnl - ?
yxE[Dl

- (E[D]-E[C])E[D]
- s E[D] - 2 jz 2 Var[D] + Var[c]

X

= _ 2 -
E[C] E[D]

Var[D] Var[C]
(E[D])^E[C] (E[D])^E[C]

E[D] E[C] u

Var[D] Var[C] a7 k ;

(E[D]) J (E[C]) J

For the specific models introduced earlier in Section 5 it is

clearly sufficient to allow the mean CPU service time to approach unity

from below in order to force s^ to zero. Consider, for example,

Case 3: letting -r = E[C] increase it is apparent that for every
A

fixed s, \\)(s) , the left-hand side of (5.3), increases, and s^

moves continuously towards the origin; when y = 1 there is a (double)

root at s = 0. A similar effect occurs when, say, A -*- in (5.4),
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a maneuver that allows E[C] to approach unity. Again ip (s) is

increased for every s, and in the limit there is a double root at

s = 0. Recall that the region of convergence of the transform iKs)

is s < min(X
1
,A

9
) = s,X and since s> < s a decrease in either X

or A eventually sends s^ to zero. Examination of the denominator

of (3.10) suggests also that if js is near zero the expectation is

near unity, thus further justifying the use of our approximation.
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This paper presents results of an approcimation study of

cyclic queueing phenomena that occur in multiprogrammed computer

systems. Based on Wald's Identity and using ideas of diffusion,

the objective is to develop convenient and nearly explicit formulas

relating processor utilization in such systems to simple program

parameters and the level of multiprogramming. Some numerical results

to indicate the quality of the proposed approximation are given.
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